
IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 11, JUNE 1, 2021 9139

Preserving Location Privacy for Outsourced
Most-Frequent Item Query in Mobile Crowdsensing

Songnian Zhang , Suprio Ray , Member, IEEE, Rongxing Lu , Fellow, IEEE,

Yandong Zheng , and Jun Shao

Abstract—The emergence of mobile crowdsensing (MCS) has
provided us with unprecedented opportunities for both sens-
ing coverage and data transmission. However, in many MCS
applications, the MCS workers are usually required to report
the location information of the assigned tasks, which inevitably
reveals the workers’ location information, even trajectories, and
severely impedes the popularization of the MCS system. It is
believed that the query on the most-frequent location, e.g., query-
ing the most congested location over a period in a city, is one
of the most popular statistics queries in the MCS system, but it
may disclose workers’ location information. To address the issue,
in this article, we propose a location privacy-preserving scheme
for outsourced most-frequent item query in the MCS system,
where two noncollusive semi-trusted cloud servers cooperatively
handle the most-frequent item query. Specifically, by employing
our pseudonymization mechanism, transposition cipher, cipher-
text packing technique, and order-preserving merge function,
our proposed scheme can efficiently answer the most-frequent
item query while ensuring the privacy of both workers’ per-
sonal information and query results. Detailed security analysis
shows that our proposed scheme is privacy-preserving. In addi-
tion, extensive experiments are conducted, and the results show
that our proposed scheme outperforms alternative schemes in
terms of computational costs and communication overhead.

Index Terms—Location privacy, mobile crowdsensing (MCS),
most-frequent item query, privacy preserving.

I. INTRODUCTION

W ITH the proliferation of mobile devices and wire-
less networks, the paradigm of mobile crowdsensing

(MCS), which employs workers to sense physical data, has
recently received considerable attention in both industry and
academia [1]–[4]. In the past years, plenty of efforts have been
devoted to developing various real-world MCS applications,
such as noise pollution assessment [5], water levels moni-
toring [6], and traffic information sharing [7]. Within most

Manuscript received November 1, 2020; revised January 9, 2021; accepted
January 27, 2021. Date of publication February 2, 2021; date of current ver-
sion May 21, 2021. This work was supported in part by NSERC Discovery
under Grant 04009 and Grant LMCRF-S-2020-03; in part by ZJNSF under
Grant LZ18F020003; and in part by NSFC under Grant U1709217 and Grant
61972304. (Corresponding author: Rongxing Lu.)

Songnian Zhang, Suprio Ray, Rongxing Lu, and Yandong Zheng are with
the Faculty of Computer Science, University of New Brunswick, Fredericton,
NB E3B 5A3, Canada (e-mail: szhang17@unb.ca; sray@unb.ca; rlu1@unb.ca;
yzheng8@unb.ca).

Jun Shao is with the School of Computer and Information Engineering,
Zhejiang Gongshang University, Hangzhou 310018, China (e-mail:
chn.junshao@gmail.com).

Digital Object Identifier 10.1109/JIOT.2021.3056442

TABLE I
Congestion DATA SET EXAMPLE

of the MCS applications, abundant location data will be col-
lected and further utilized for various location-based services.
Among these location-based services, the most-frequent item
query service over location data is very common, e.g., find-
ing the most congested location in a city (hereafter, we will
use “the most-frequent item” and “the most-frequent loca-
tion” interchangeably). Specifically, given a set of location data
{l1, l2, . . . , ln}, in which li has a frequency freq(li), a most-
frequent location query is to find a location lmax that has the
largest frequency, i.e., freq(lmax) ≥ freq(li), for i = 1, . . . , n.
To clearly present the most-frequent location query in the MCS
system, an example is given as follows.

Example 1: Suppose the MCS platform accumulates a traffic
congestion information data set from workers, and each data
record includes an id (worker’s identity information), an event
type, a location, and a timestamp. Here, we list a few tuples
of the data set in Table I.

In the table, wi (i = 1, 2, 3) indicates the worker’s identity
and is used to trace a worker for incentives. An authorized
query user would like to know which location is the most
congested in a time window, so as to plan his/her route in
advance. In order to obtain the most frequent location, the
query user can launch an SQL query

SELECT location, count(*) AS count

FROM congestion

WHERE 1593610000<timeStamp<1593650000

GROUP BY location ORDER BY count DESC LIMIT 1.

Then, the MCS platform processes the query and returns the
most-frequent location (46.11, −73.1) and the corresponding
frequency value: 2.

Meanwhile, due to the rapid increase in the data volume,
the MCS system tends to outsource the collected data and the
corresponding most-frequent item query service to a cloud for
the performance and cost considerations. However, the cloud
is not fully trusted, and the leakage of the location data may

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:31:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0558-4485
https://orcid.org/0000-0003-0681-9685
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0001-8352-0973

9140 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 11, JUNE 1, 2021

incur a series of attacks, such as inferring movements, daily
behaviors, and most likely appeared locations of a person,
which can seriously threaten personal privacy even safety [8].
In the MCS system, to preserve location privacy over the
cloud, privacy-preserving techniques are commonly involved
in protecting the location data before reporting them, such
as the clocking technique, adding dummy points, and the
differential privacy technique [9]. However, the existing tech-
niques, which can be used in our query scenario, sacrifice
accuracy to protect the location privacy [10]. Therefore, it is
still challenging to achieve the accurate query result for the
most-frequent location query over the cloud while ensuring
the privacy of the workers’ location data {li}ni=1 and the query
result (lmax, freq(lmax)).

Aiming at the above challenge, in this article, we propose a
privacy-preserving most-frequent location query scheme that
can support the accurate query result. In our scheme, the cloud
collects location data encrypted by the workers and conducts
queries while preserving the privacy of the workers’ location
information and the query results. To prevent the cloud from
linking the encrypted location data and further obtaining the
query result over them directly, we employ the semantic-secure
encryption to encrypt the location data, which undoubtedly
creates difficulties for the cloud to answer the query. To tackle
them, we design the privacy-preserving most-frequent loca-
tion query scheme in a two-server setting [11]. In addition,
our scheme protects the workers’ real identities by a novel
pseudonymization technique that can guarantee the unlinkable
identities for one worker in different periods. Specifically, the
main contributions of this work are threefold.

1) We propose a privacy-preserving scheme to answer the
most-frequent location query in the MCS system, which
can protect the workers’ personal information and query
results. In the scheme, we adopt the Paillier cryptosys-
tem to encrypt the sensed location data and design a
new pseudonymization mechanism to hide the workers’
identities while ensuring the traceability. To preserve
the privacy of query results, we utilize the transposition
cipher [12] to protect the locations’ frequency values
and the self-blinding property of the Paillier cryptosys-
tem to break the link between Paillier ciphertexts. To
the best of our knowledge, we are the first to consider
the privacy-preserving most-frequent location query over
encrypted data and achieve the privacy in both the
workers’ personal information and query results.

2) We employ optimization techniques to improve the effi-
ciency of the proposed scheme. In particular, we first
introduce a ciphertext packing technique to reduce the
computational and communication costs by compressing
several ciphertexts into one. Besides, to further optimize
our scheme, we propose an order-preserving merge func-
tion that can improve the efficiency of our scheme by
merging two transferred data into one while maintaining
the order relation on the first transferred data.

3) Finally, we conduct extensive experiments to evaluate
the performance of the proposed scheme, and the results
show that it outperforms the baseline scheme in terms
of computational costs and communication overhead.

Fig. 1. System model under consideration.

The remainder of this article is organized as follows. In
Section II, we introduce our system model, security model, and
design goal. Then, we review our preliminaries in Section III.
After that, we present our privacy-preserving query scheme in
Section IV, followed security analysis and performance eval-
uation in Sections V and VI, respectively. Finally, we discuss
some related works in Section VII and draw our conclusion
in Section VIII.

II. MODELS AND DESIGN GOAL

In this section, we formalize the system model, security
model, and identify our design goal.

A. System Model

In our system model, we consider a typical cloud-based
MCS system to answer the most-frequent item query on
encrypted location data, which mainly consists of four types
of entities, namely, an MCS platform P , a set of workers
W = {w1, w2, w3 . . .}, the cloud CS = {S1, S2}, and a
query user U , as shown in Fig. 1.

MCS Platform P: In our system model, the MCS platform
P is responsible for the whole MCS system. The tasks of P
include managing the workers W = {w1, w2, w3 . . .} and the
query user U , initiating the MCS tasks to W , and supporting
the most-frequent item query from U . However, since P may
be not powerful in storage and computing, P tends to out-
source MCS data management and the query services to the
cloud CS.

Cloud CS = {S1, S2}: The MCS platform will employ
two cloud servers CS={S1, S2} from different cloud service
providers, which are considered as powerful in both storage
and computing. S1 stores the reported data from the work-
ers W while S2 is authorized with the private key. They will
cooperatively offer reliable most-frequent item query services
to the query user U .

Workers W = {w1, w2, w3 · · · }: We consider the mobile
users, who have registered in the MCS platform and participate
in the MCS tasks, as the workers in our system. For each
worker wi ∈W , once sensing an event, he/she will report the
event to the cloud CS in the following format:

〈wi,eventType,location,timeStamp〉

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:31:04 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRESERVING LOCATION PRIVACY FOR OUTSOURCED MOST-FREQUENT ITEM QUERY IN MOBILE CROWDSENSING 9141

where eventType, location, and timeStamp are,
respectively, denoted as the event’s type, location, and report-
ing time.

Query User U: In our system, the query user U may be a
data analyst, who has registered to the MCS platform and will
launch the most-frequent item query to the cloud for gaining
the desirable results, e.g., the most frequent location item and
its frequency in this work. Note that though our system model
just considers one query user U , it is natural to extend one to
multiple query users.

B. Security Model

In our security model, we consider the MCS platform P is
fully trusted, while the cloud CS is honest-but-curious, i.e., CS
will faithfully follow the protocols by: 1) storing the sensed
data from the workers W and 2) offering most-frequent item
query services to the query user U , but may be curious on the
sensitive personal information, including the workers’ iden-
tities and location, and the query results. For the cloud, we
assume there is no collusion between S1 and S2, as well as
no collusion between the cloud and other entities (the work-
ers and the query user), which is reasonable since the cloud
should maintain its reputation and interests. For the workers,
they are considered honest. That is, they will honestly process
the sensed data and report them to the cloud. However, since
the cloud is not fully trusted, before reporting the sensed event,
the real identity will be pseudonymized, and the location data
will be encrypted in the following format:

〈PIDi,eventType, Enc(location)timeStamp〉
where PIDi represents the pseudo-ID of the worker wi, and
Enc(·) indicates employing a semantically secure encryption
algorithm to encrypt the location data. For the query user, we
consider the authorized user to be honest, who will faithfully
follow the protocol to issue the most-frequent item query.

Note that external attackers may launch other active attacks,
e.g., Denial-of-Service (DoS) attacks, to the MCS system.
Since we focus on the privacy-preserving most-frequent item
query, those attacks are beyond the scope of this article and
will be discussed in our future work.

C. Design Goal

Under the aforementioned system model and security
model, our design goal is to present a privacy-preserving most-
frequent item query scheme for the MCS system. In particular,
the following objectives should be attained.

1) Privacy Preservation: The fundamental requirement of
the proposed scheme is the privacy preservation. On the
one hand, the worker’s personal information, including
the identity and location data, should be kept secret from
the cloud. On the other hand, our scheme guarantees
that the cloud has no idea about the query result, which
implies protecting the content of the query result, the
frequency values {freq(li)}ni=1, and the information about
which encrypted location is picked as the most frequent
one.

2) Efficiency: In order to achieve the above privacy require-
ments, it is inevitable to incur extra computational
costs, i.e., processing the most-frequent item query over
encrypted location will undoubtedly increase the compu-
tational costs compared with it doing over the plaintexts.
In addition, since our scheme is deployed in a two-server
setting, the communication overhead is another notable
cost. Therefore, in the proposed scheme, we also aim to
minimize the computational and communication costs of
querying the most-frequent item.

III. PRELIMINARIES

In this section, we briefly review the Paillier cryptosys-
tem and transposition cipher, which will serve as the building
blocks of our proposed scheme.

A. Paillier Cryptosystem

The Paillier cryptosystem [13] is a famous homomorphic
encryption scheme that allows performing operations over
the encrypted data and has been widely employed in var-
ious privacy-preserving computations [14]. Specifically, the
Paillier cryptosystem includes three algorithms, namely: 1)
key generation P.KeyGen(κ); 2) encryption P.Enc(pk, m);
and 3) decryption P.Dec(sk, c), as follows.

1) P.KeyGen(κ): Given a security parameter κ , e.g., κ =
512, choose two large prime numbers p = 2p′ + 1 and
q = 2q′ + 1, where |p| = |q| = κ , and p′ and q′ are also
two primes. Let n = pq, λ = lcm(p− 1, q− 1) = 2p′q′.
After randomly choosing a generator g ∈ Z

∗
n2 such that

gcd(L(gλ mod n2), n) = 1, μ = (L(gλ mod n2))−1 mod
n is calculated, where L(x) = (x− 1/n). The public key
is pk = (n, g), and the corresponding private key is sk =
(λ, μ).

2) P.Enc(pk, m): Given a message m ∈ Zn, choose a
random number r ∈ Z

∗
n, and the ciphertext c can be

calculated as c = P.Enc(pk, m) = gm · rn mod n2.
3) P.Dec(sk, c): Given the ciphertext c, with sk, the cor-

responding message m can be recovered as m =
P.Dec(sk, c) = L(cλ mod n2) · μ mod n.

The Paillier cryptosystem is proved as semantically
secure [13] and also enjoys the following three homomor-
phic properties. To save space, henceforth, P.Enc(pk, m) and
P.Dec(sk, c) are abbreviated as E(m) and D(m), respectively.

1) Addition: Given two ciphertexts E(m1) and E(m2), we
have E(m1) · E(m2)→ E(m1 + m2).

2) Multiplication: Given a ciphertext E(m1) and a plaintext
m2 ∈ Zn, we have E(m1)

m2 → E(m1 · m2).
3) Self-Blinding: Given a ciphertext E(m1) = gm1 · rn

1 mod
n2 and a random number r2 ∈ Z

∗
n, we have E(m1) ·

rn
2 mod n2 → E(m1) = gm1 · (r1r2)

n mod n2.

B. Transposition Cipher

As is known, the transposition cipher [12] is a classical
encryption technique achieved by rearranging the order of let-
ters according to the predetermined pattern. Given an n × m
matrix R, where n is the row size and m is the column size, the
transposition cipher, including key generation T.KeyGen(),

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:31:04 UTC from IEEE Xplore. Restrictions apply.

9142 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 11, JUNE 1, 2021

encryption T.Enc(), and decryption T.Dec(), can be applied
on the matrix R as follows.

1) T.KeyGen(n, m): With the row size n and the column
size m, two vectors

vr = {r0, r1, . . . , rn−1|r0=0, r1=1, .., rn−1=n−1}
vc = {c0, c1, . . . , cm−1|c1=0, c1=1, .., cm−1=m−1}

are initialized. Then, the transposition keys can be
generated as two permuted vectors {P(vr), P(vc)} by
adopting the Durstenfeld version of the Fisher-Yates
algorithm [15], i.e.,

P(vr) =
{

swap
(
ri, rj

)| j
random←−−−− [0, i] for i=n−1 to 0

}

P(vc) =
{

swap
(
ci, cj

)| j
random←−−−− [0, i] for i=m−1 to 0

}
.

2) T.Enc(P(vr), P(vc), R): Given a matrix R, the transpo-
sition keys P(vr) and P(vc) can be applied to permute
the matrix on its rows and columns, respectively, and
then the encrypted matrix CR is generated.

3) T.Dec(P(vr), P(vc), CR): Given the encrypted matrix
CR, the corresponding matrix R can be recovered by
swapping the rows and columns in CR based on the map-
ping relations recorded in transposition keys: P(vr) and
P(vc).

Obviously, for the matrix-based transposition cipher, the
keyspace is n!×m!, As the shuffle algorithm [15] can guaran-
tee an unbiased permutation, i.e., every permutation is equally
likely, the adversary can infer the original matrix R only with
probability (1/[n!× m!]).

IV. OUR PROPOSED SCHEME

In this section, we present our privacy-preserving most-
frequent location query scheme. Before that, we would like to
introduce the order-preserving merge function, which serves
as an important component in our scheme.

A. Order-Preserving Merge Function

Suppose that there are two Paillier encrypted data sets E(x)
and E(y) with the same size

E(x) = {(E(x1), E(x2), . . . , E(xt))|xi ∈ Zn, 1 ≤ i ≤ t}
E(y) = {(E(y1), E(y2), . . . , E(yt))|yi ∈ Zn, 1 ≤ i ≤ t}.

The order-preserving merge function is defined as follows.
Definition 1 (Order-Preserving Merge Function): An order-

preserving merge function fop(·) can map E(xi) and E(yi) to
a new ciphertext E(zi) = fop(E(xi), E(yi)), which has three
properties.

1) zi preserves the order of xi, i.e., if xi > xj, zi > zj.
2) zi is probabilistic, i.e., if xi = xj and yi = yj, in general,

zi �= zj.
3) zi is reversible, i.e., (xi, yi) can be recovered from zi

where 1 ≤ i, j ≤ t.
We construct an order-preserving merge function fop by

E(zi) = fop(E(xi), E(yi)) = E(xi)
a · E(yi)

b · E(rci)

⇒ zi = a · xi + b · yi + rci (1)

where a and b are two integers, and rci is a random number.
Moreover, we guarantee that |a| > max(|yi|)+ |b|, and |b| >
|rci|, where | · | represents the bit length of an integer. Next,
we prove that the above construction satisfies Definition 1.

Theorem 1: The construction (1) can guarantee zi satisfies
all properties of the order-preserving merge function.

Proof: First, we assume that E(zi) = fop(E(xi), E(yi)),
E(zj) = fop(E(xj), E(yj)) and xi > xj.

1) zi Preserves the Order of xi: Based on the above
assumption, we have

zi − zj = a · (xi − xj
)+ b · (yi − yj

)+ (
rci − rcj

)

> a · (xi − xj)− (b · yi + rcj)
xi>xj−−−→

≥ a− (
b · yj + rcj

) |b|>|rcj|−−−−−→
> a− b · (yj + 1

) |a|>max(|yi|)+|b|−−−−−−−−−−→≥ 0.

Hence, zi preserves the order of xi.
2) zi is Probabilistic: It is evident that zi is probabilistic

due to the existence of the random number rci.
3) zi is Reversible: Given zi, a, and b, since a > b · yi+ rci,

we have vi = zi mod a = b ·yi+rci. Consequently, xi =
([zi − vi]/a) and yi = ([vi − (vi mod b)]/b). Hence, zi

is reversible.

B. Description of Our Proposed Scheme

In this section, we show the details of our proposed scheme,
which mainly consists of five phases: 1) system initialization;
2) data report from workers; 3) query request from query user;
4) query response at cloud; and 5) response recovery at query
user.

1) System Initialization: We consider the MCS platform P
is a trustable entity and will bootstrap the whole system. To
initialize the system, the MCS platform P needs to register
and authenticate the workers and query user to guarantee that
only the authenticated workers and query user can perform the
MCS tasks and the most-frequent location query, respectively.
The details of system initialization are described as follows.

1) Parameter Generation: Given the security parameters
(κ0, κ1), the MCS platform first chooses two random
numbers s0, s1 ∈ {0, 1}κ0 as the master secret keys and
uses κ1 to generate the Paillier public–private key pair
(pk, sk) = ((n, g), (λ, μ)) (see details in Section III-A).
After that, the MCS platform chooses a secure sym-
metric key encryption SE(), i.e., AES-128, and a
secure hash function H(), e.g., SHA-256. Finally, the
MCS platform sets and publishes the system parameters
{pk, SE(), H()} and securely assigns s1 to the server S1
as well as sk to the server S2.

2) Registration: Both the workers W and the query user
U need to register to the system. For a worker wi ∈
W with identity IDi, the MCS platform verifies the
authenticity of IDi and generates a set of pseudo-
IDs together with the corresponding secret keys, i.e.,
PIDi = {(PIDij, kij)|j = 1, 2, . . .} for wi, where each
PIDij = SE(IDi‖rj, s0) is generated by encrypting the
identity IDi and a random number rj using the master

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:31:04 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRESERVING LOCATION PRIVACY FOR OUTSOURCED MOST-FREQUENT ITEM QUERY IN MOBILE CROWDSENSING 9143

Algorithm 1 Compression
Input: An upper triangular matrix, Ru; the row or column size of

Ru, n.
Output: A compressed matrix, R;

1: (row, col) ← (n mod 2 == 0) ? (n− 1, n
2):(n−1

2 , n)
2: R ← new Matrix(row, col)
3: cnt← 0
4: for i = 0→ n− 1 do
5: for j = i+ 1→ n− 1 do
6: r← cnt mod row
7: c← cnt / row
8: R[r][c]← Ru[i][j]
9: cnt← cnt + 1

10: end for
11: end for
12: return R

key s0, and kij = H(PIDij, s1). Then, the MCS platform
authorizes wi with PIDi via a security channel. With
this setting, wi can change his/her pseudo-ID at a regu-
lar interval, e.g., 1 h, by selecting different pseudo-IDs
from PIDi. When necessary, the MCS platform can
still easily recover the real identity IDi from a given
pseudo-ID PIDij by decrypting it into IDi‖rj with s0.
In order to ensure that wi has different pseudo-IDs in
different periods, wi will remove the used (PIDij, kij)

from PIDi, and the MCS platform will regularly update
PIDi before it runs out. When the query user U with
identity IDu registers him/herself to the most-frequent
item query services provided by the MCS platform, the
platform will authenticate the user, and authorize the
private keys {ku=H(IDu, s1), sk} to him/her, so that the
latter can use the private keys to launch a query and
recover the query results from the cloud.

3) Task Generation: The MCS platform needs to initialize
a task that specifies the expected event and its format,
and then distributes the task to all registered workers and
the cloud. Since different location-based services usually
require different precision values of the location data,
the MCS platform also includes the precision require-
ment dp, i.e., the decimal places reserved for latitude
and longitude, in the task.

2) Data Report From Workers: Once a worker wi accepts
the task, he/she can choose a pair (PIDij, kij) from PIDi and
report the sensed event by the following specified format:

Rij =
〈
PIDij,eventType, E(li),timeStamp

〉

together with its hash value Hij = H(Rij, kij), i.e., Rij||Hij, to
the cloud server S1, where PIDij is one pseudo-ID in PIDi,
kij is the secret key corresponding to PIDij, and E(li) indi-
cates encrypting the encoded location data li with the Paillier
cryptosystem. Note that the encoded location data li should
be a positive integer. In our scheme, we adopt a simple
location encoding algorithm, called SLE, which is more effi-
cient than other existing techniques, such as the geohash [16]
and the Z-order curve technique [17]. Suppose there is a
location data, denoted as 〈lon,lat〉, with a precision dp

= 5, e.g., 〈−73.98134, 40.75864〉. The encoding algorithm
SLE(lon,lat) works as follows.

Algorithm 2 Ciphertext Packing
1: function packing(Rc, |ml|)
2: r ← getRowSize(Rc); c ← getColSize(Rc)
3: nc ← (c mod 2 == 0) ? c

2 : c+1
2

4: Rs ← new Matrix(r, nc)
5: for j = 0→ nc− 1 do
6: for i = 0→ r − 1 do
7: E(v1) ← Rc.get(i, j ∗ 2)
8: if Rc.get(i, j ∗ 2+ 1) == null then
9: res ← E(v1)

10: else
11: E(v2) ← Rc.get(i, j ∗ 2+ 1)
12: res ← E(v1)2|ml| · E(v2)
13: end if
14: Rs.set(i, j, res)
15: end for
16: end for
17: return Rs
18: end function
19:
20: function unpacking(Rs, |ml|, col)
21: r ← getRowSize(Rs); c ← getColSize(Rs)
22: Rc ← new Matrix(r, col)
23: for j = 0→ c− 1 do
24: for i = 0→ r − 1 do
25: v ← D(Rs.get(i, j))
26: if (2 ∗ j+ 1) > (col− 1) then
27: Rc.set(i, col− 1, v)
28: else
29: v1 ← v >> |ml|; v2 ← v & (2|ml| − 1)
30: Rc.set(i, 2 ∗ j, v1); Rc.set(i, 2 ∗ j+ 1, v2)
31: end if
32: end for
33: end for
34: return Rc
35: end function

Step-1: Convert lon and lat into the range of [0, 360]
and [0, 180], respectively. Denote the converted
data as 〈plon,plat〉, where plon = lon+180
and plat = lat+ 90.

Step 2: Lift 〈plon,plat〉 to positive integers. In the
example, as lon and lat are truncated to the
first five decimal places, it is easy to obtain
the positive integers by multiplying 105, so that
plon and plat, respectively, fall into the ranges
[0, 3.6× 107] and [0, 1.8× 107].

Step 3: Integrate these two positive integers, plon and
plat, to a big integer l, i.e., l = plon ·10(dp+3)+
plat.

Upon receiving the report Rij||Hij, the cloud server S1 first
uses the secret key s1 to compute kij = H(PIDij, s1), and then

checks whether Hij
?= H(Rij, kij). If yes, the report Rij will be

accepted, and rejected otherwise.

3) Query Request From Query User: Assume the query
user U launches the following most-frequent item query Q:
which location is the hottest for a specified event in a past time
window, and what is the corresponding frequency value? In
other words, the query user wants to query the most-frequent
location and its frequency value filtered by the event type and
the time stamp. An example of the SQL statement is shown as

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:31:04 UTC from IEEE Xplore. Restrictions apply.

9144 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 11, JUNE 1, 2021

Algorithm 3 Decompression
Input: A compressed matrix, R; the row or column size of Ru, n;

the number of added dummy row, dr .
Output: An upper triangular matrix, Ru;

1: row ← getRows(R) - dr
2: Ru ← new Matrix(n, n)
3: for i = 0→ n− 1 do
4: for j = i→ n− 1 do
5: if i=j then
6: Ru[i][j]← E(1)
7: else if i < j then
8: cnt← i · n+ j
9: r← cnt mod row

10: c← cnt / row
11: Ru[i][j]← R[r][c]
12: end if
13: end for
14: end for
15: return Ru

follows, which queries the most “Traffic congestion” location

SELECT location, count(∗) AS count

FROM table

WHERE lowerBound < timeStamp < upperBound

AND eventType = “Traffic congestion′′

GROUPBYlocationORDERBYcountDESCLIMIT1.

The query user U will send the following query request:

IDu‖Q‖H(IDu||Q, ku)

to the cloud server S1. Upon receiving the query request
IDu||Q||H(IDu||Q, ku), the cloud server S1 first uses the secret
key s1 to compute the key ku = H(IDu, s1), and then checks
whether the received H(IDu||Q, ku) is correct. If yes, the query
request will be further processed, and rejected otherwise.

4) Query Response at Cloud: In order to achieve the pri-
vacy preservation in responding to the query Q, the cloud
servers S1 and S2 will cooperatively provide the most-frequent
location query services by running the following steps.

Step-1: Since S1 receives and stores all reported data, the
server will launch the query response by filtering
the stored data and forming an encrypted loca-
tion set E(L) = {E(l1), E(l2), . . . , E(ln)}, where
E(li) (1 ≤ i ≤ n and n > 1) indicates that
the encoded location data li is encrypted by the
Paillier cryptosystem. Fig. 2 shows an example
of how to respond to the query Q over E(L) =
{E(1), E(2), E(6), E(6), E(8)}.

Step-2: Based on the set E(L), S1 first generates an n× n
matrix Ru, which is an upper triangular matrix
without the leading diagonal. In Ru, each ele-
ment Rij

u in the ith row and jth column is a test
pair and is computed as Rij

u = E(rij(li − lj)) =
([E(li)]/[E(lj)])rij where rij ∈ {0, 1}α (α � κ1)
is a random number. In Fig. 2, we denote the
element in Ru as Elilj and ignore those elements
i ≥ j for simplicity. Then, S1 compresses Ru

into a new (n − 1) × (n/2) or (n− 1/2) × n

matrix by rearranging the valid elements in Ru

[see the detailed compression in Algorithm 1 and
an example of the compressed matrix, i.e., the
matrix (b), in Fig. 2]. Next, S1 adds dummy data
into the compressed matrix, and the strategy is
as follows.

a) Add at least one row and one column of
dummy data to the compressed matrix.

b) Each dummy data are randomly generated by
encrypting 0 or r, where r ∈ [− η, η] is a
random number, and η ∈ {0, 1}α .

c) Guarantee that there are at least one E(0) and
one E(r) in the dummy data.

We denote the newly formed matrix as Rc. After
adding dummy data, S1 applies the transposition
cipher on the matrix Rc to further enhance the
privacy of our scheme. Specifically, S1 generates
two transposition keys, P(vr) and P(vc), and uses
them to permute Rc. In Fig. 2, the transposition
keys P(vr) = {2, 3, 1} and P(vc) = {3, 1, 6, 4, 2, 5}
are used to encrypt the matrix (c), in which one
row and one column dummy data are added, E00

indicates E(0), and Eri means ith E(r). Before
transferring the permuted matrix Rc to S2, S1 com-
presses it into a smaller matrix Rs by employing
the ciphertext packing technique packing(Rc, |ml|),
as shown in Algorithm 2, where |ml| is the bit
length of a mask and can be determined and pub-
lished by the MCS platform. (See an example on
how to choose |ml| in Section VI-B.) In Fig. 2,
the element in Rs is represented as Elslt

lilj
that packs

the underlying plaintext of Elilj and Elslt into one
(for ease of presentation, E00 and Eri are unified
as Elilj or Elslt). Finally, S1 transfers the matrix Rs

and the column size col of Rc to S2.
Step-3: After receiving the matrix Rs, S2 decrypts all ele-

ments in Rs and recovers underlying plaintexts
of the elements in permuted Rc by the unpack-
ing function in Algorithm 2. Then, S2 tests if
the recovered plaintexts Plilj is 0, where Plilj =
rij(li − lj). If yes, S2 generates E(1) as the test
result, and E(0) otherwise. Next, S2 puts the test
result to the corresponding position in the per-
muted Rc. In Fig. 2, the matrix (f) contains the
recovered plaintexts Plilj , and the matrix (g) is the
tested Rc, where E0 and E1 represent E(0) and
E(1), respectively. Finally, S2 sends the tested Rc

back to S1.
Step-4: S1 receives the tested Rc and reverses it using

the transposition keys: P(vr) and P(vc). Then, S1
applies the decompression algorithm, as shown
in Algorithm 3, to generate an upper triangular
matrix that is depicted as matrix (i) in Fig. 2.
Next, S1 computes the encrypted frequency val-
ues for each item based on the upper triangular
matrix with Algorithm 4, which uses the additive
homomorphic property of the Paillier cryptosystem

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:31:04 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRESERVING LOCATION PRIVACY FOR OUTSOURCED MOST-FREQUENT ITEM QUERY IN MOBILE CROWDSENSING 9145

Fig. 2. Example for query response at cloud.

Algorithm 4 Frequency Counting
Input: A recovered upper triangular matrix filled with encrypted test

results, R; the row or column size of Ru, n.
Output: A set for collecting encrypted frequency values, E(frep(L)).

1: for i = 0→ n− 1 do
2: Efreq ← E(1)

3: for j = 0→ n− 1 do
4: if i > j then
5: current ← R[j][i]
6: else if i < j then
7: current ← R[i][j];
8: end if
9: Efreq ← Efreq· current

10: end for
11: E(frep(L)).append(Efreq)
12: end for
13: return E(frep(L))

and is visually represented by calculating the test
results on different color lines in the matrix (i).

Step-5: To date, S1 holds two data sets with the same size

E(L) = {E(l1), E(l2), · · · , E(ln)}
E

(
freq(L)

) = {
E

(
freq(l1)

)
, E

(
freq(l2)

)

· · · E
(
freq(ln)

)}

where freq(li) (1 ≤ i ≤ n) is the frequency value of
li. In order to hide the privacy of the query result
on which item in E(L) is the most frequent and
enhance the performance, before picking out the
most-frequent item, S1 adopts the order-preserving
merge function to merge E(li) and E(freq(li)) into
one ciphertext

E(pi) = fop
(
E

(
freq(li)

)
, E(li)

)

= E
(
a · freq(li)+ b · li + rci

)

in which pi can preserve the order relation of
freq(li), i.e., if freq(li) > freq(lj), pi > pj holds.
Then, S1 selects two merged data, for example,
E(p1) and E(p2), and chooses two random num-
bers r1, r2 ∈ {0, 1}α to calculate E(p̄1) and E(p̄2),
where

E(p̄1) = E(p1)
r1 · E(r2) = E(p1 · r1 + r2)

E(p̄2) = E(p2)
r1 · E(r2) = E(p2 · r1 + r2).

Next, S1 sends E(p̄1) and E(p̄2) to S2 for obtaining
the ciphertext that has the larger plaintext.

Step-6: Upon receiving E(p̄1) and E(p̄2) from S1, S2
decrypts them using the private key sk and
obtains two plaintexts: p̄1 and p̄2. Then, S2 com-
pares p̄1 and p̄2 and defines p̄k as the larger
one, i.e., p̄k = max(p̄1, p̄2). After that, S2 con-
ducts the self-blinding operation on E(p̄k), i.e.,
ck = selfBlind(E(p̄k)), and returns ck to S1. In
other words, the self-blinding operation will be
employed on the ciphertext who has the larger
underlying plaintext, seeing the example in Fig. 2.

Step-7: With the received ck, S1 recovers E(pk) by E(pk) =
(ck/[E(r2)])r1

−1
, where pk contains the larger

frequency value and the corresponding item. Since
the self-blinding property can transform a cipher-
text to another one without changing the corre-
sponding plaintext, S1 is unable to link ck to E(p̄1)

or E(p̄2).
After that, S1 constructs E(pj) by merging the unchecked
{E(freq(lj)), E(lj)} and compares it with the recovered E(pk).
Repeat steps-5–7, until all items in E(L) are compared. Totally,
there will be n−1 rounds, and the recovered ciphertext E(pk)

in the last round (gray background area in Fig. 2) will contain

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:31:04 UTC from IEEE Xplore. Restrictions apply.

9146 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 11, JUNE 1, 2021

the largest frequency and its item. Note that if two or more
items in E(L) have the largest frequency value, the larger item
will be picked as the query result, which is guaranteed by the
order-preserving merge function. In order to securely return
E(pk) and the parameters {a, b} to the query user IDu, S1 first
generates the private key ku = H(IDu, s1) with authorized
s1 for the query user, then encrypts E(pk)||a||b with ku, i.e.,
Res = SE(E(pk)||a||b, ku). Eventually, S1 sends Res to the
query user IDu for responding the most-frequent item query.

5) Response Recovery at Query User: Upon receiving the
query response Res from S1, with the authorized private keys
{ku, sk}, the query user IDu can first recover E(pk)||a||b with
ku, then decrypt E(pk) with sk, i.e., pk = D(sk, E(pk)) =
a · freq(lk) + b · lk + rck. Finally, with a and b, the largest
frequency value freq(lmax) and the most-frequent item lmax
can be obtained as follows, where we let vk = pk mod a

freq(lmax) = pk − vk

a
; lmax = vk − (vk mod b)

b
. (2)

V. SECURITY ANALYSIS

In this section, we discuss the security properties of our
proposed most-frequent item query scheme. In particular, fol-
lowing our design goal, we will focus on how the proposed
scheme can achieve privacy preservation for workers’ personal
information and the query result against two noncollusive
cloud servers CS = {S1, S2}.

A. Workers’ Personal Information Is Privacy Preserving

In our scheme, the workers’ personal information refers to
their identities and locations, which are stored in the cloud.
Specifically, S1 stores the collected data, while S2 holds the
private key sk. In the following, we will show that the identity
and location information are kept secret from S1 and S2.

Identity Information Is Privacy Preserving: A worker’s
real identity IDi should be protected from S1 and S2. For
S1, it holds the collected data, i.e., 〈PIDij,eventType,

E(li),timeStamp〉, and it may attempt to infer the worker’s
real identity in two ways. First, S1 may use the pseudo-ID
PIDij to infer IDi, where PIDij = SE(IDi‖rj, s0). Since
S1 does not have the secret key s0, the security of the sym-
metric key encryption SE() ensures that S1 cannot recover
the real identity IDi from PIDij. Second, S1 may deduce
IDi using the remaining fields, i.e., eventType, E(li), and
timeStamp. Since E(li) is generated by the Paillier cryp-
tosystem, S1 cannot recover li without the private key sk. Thus,
S1 is unable to infer IDi using the location data. In this case,
S1 may infer IDi with eventType and timeStamp. That
is, if a worker uses one fixed pseudo-ID, S1 may learn work-
ers’ activity patterns from the accumulated eventType and
timeStamp, which can be used to infer the real identity
IDi [8]. Since a worker in our scheme will select a differ-
ent PIDij and change his/her identity at short intervals, S1
is unable to obtain the worker’s activity patterns. As a result,
S1 cannot infer the real identity IDi with eventType and
timeStamp. Hence, S1 has no idea about the worker’s real
identity.

For S2, since it cannot access the collected data, S2 learns
nothing about the worker’s identity. It is worth noting that there
is no collusion between S1 and S2. To sum up, the worker’s
identity information is privacy-preserving.

The Location Information Is Privacy-Preserving: The work-
ers’ location data {li}ni=1 and the linkage between locations
(i.e., whether two encrypted locations refer to the same
location) should be protected from S1 and S2.

For S1, it stores the encrypted location data {E(li)}ni=1 and
processes these data through the Paillier homomorphic opera-
tions. When conducting queries, S1 interacts with S2 to obtain
the encrypted results of location equality tests, i.e., E(1) or
E(0), between any two E(li) and E(lj), where the values {1, 0}
indicate whether these two encrypted locations refer to the
same location or not. Since these values are encrypted, and S1
does not have the private key sk, the security of the Paillier
cryptosystem guarantees that S1 cannot obtain the location data
and their linkage information.

For S2, as our scheme shows, it can use the authorized pri-
vate key sk to recover: 1) the underlying plaintexts Plilj of
elements in permuted Rc, where Plilj = rij(li − lj), i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pl1l2 = r12(l1 − l2)
· · · · · ·

Pl1ln = r1n(l1 − ln)

⎫⎬
⎭(n− 1)

Pl2l3 = r23(l2 − l3)
· · · · · ·

Pl2ln = r2n(l2 − ln)

⎫⎬
⎭(n− 2)

· · · · · · · · · · · ·
· · · · · · · · · · · ·

Pln−1ln = r(n−1)n(ln−1 − ln);
}
1

(3)

and 2) p̄i and p̄j in a comparison round, where
{

p̄i =
(
a · freq(li)+ b · li + rci

) · r1 + r2

p̄j =
(
a · freq(lj)+ b · lj + rcj

) · r1 + r2.
(4)

For the plaintexts Plilj , S2 can construct a system of equations,
as shown in (3). Obviously, there are n unknown locations
{li}ni=1 and ([n(n− 1)]/2) random numbers in the system.
Since the system only has ([n(n− 1)]/2) equations, S2 can-
not solve the system to obtain the location data {li}ni=1. For the
plaintexts p̄i and p̄j in each comparison round, S2 can construct
a system of equations, as shown in (4). Since the system has
at least four variables {rci, rcj, r1, r2} and only two equations,
S2 cannot solve this system to obtain the location data {li, lj}.
Besides, although S2 can determine whether rij(li − lj)

?= 0,
it has no idea about which two locations are the same when
the result is 0. As a result, S2 can neither recover the location
data nor infer the linkage information.

To sum up, the noncollusive S1 and S2 learn nothing about
the workers’ location data {li}ni=1 and their linkage information.
Thus, the location information is privacy preserving.

B. Query Result Is Privacy Preserving

In this section, we first show the content of the query result
(lmax, freq(lmax)) is privacy preserving. Then, we prove the
locations’ frequency values, which can be used to infer the

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:31:04 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRESERVING LOCATION PRIVACY FOR OUTSOURCED MOST-FREQUENT ITEM QUERY IN MOBILE CROWDSENSING 9147

query result, are privacy preserving. In addition, we demon-
strate the query result on which encrypted location E(li) in
E(L) is picked as the most frequent one is privacy preserving.

Content of the Query Result Is Privacy Preserving: In
response to the most-frequent location query, S1 can obtain
E(pk), where pk = a · freq(lmax) + b · lmax + rck, and S2 can
obtain the largest p̄k = pk · r1 + r2 in the last round. For S1,
it cannot even access pk from E(pk) without sk. For S2, pk is
also kept secret due to the existence of the random numbers,
r1 and r2. Additionally, in our scheme, S1 encrypts the query
response {E(pk), a, b} by the symmetric key encryption SE(),
i.e., Res = SE(E(pk)||a||b, ku), before transferring it to the
query user. Therefore, S2 cannot recover {E(pk), a, b} without
ku, which can prevent S2 from obtaining pk by the authorized
sk. Note that pk contains the query result (lmax, freq(lmax)).
Hence, in our scheme, the content of the query result is privacy
preserving.

Locations’ Frequency Values Are Privacy Preserving: Next,
we will show that the frequency values are privacy preserving
in our scheme.

For S1, it can obtain the encrypted test results and further use
them to homomorphically compute the encrypted frequency
values. As all of them are encrypted with the Paillier cryp-
tosystem, S1 is unable to know their underlying plaintexts
without sk. As a result, S1 has no idea about the locations’
frequency values.

As our scheme shows, S2 can know the equality test results
and recover p̄i and p̄j in comparison rounds [see details in (4)].
First, with the equality test results, if S2 can correctly put them
into the original positions in Ru, the server can easily count
the frequency values using the similar way in Algorithm 4.
However, before transferring Ru to S2, two techniques are
adopted: 1) adding dummies and 2) transposition cipher. If
we assume n is an even number and there are dr rows and
dc columns dummy data, the keyspace of the transposition
cipher will be ((n−1)+dr)!× (n/2+dc)!. Since the transpo-
sition cipher is applied to the Paillier ciphertexts, the existing
attacks for transposition cipher, such as the frequency analysis,
do not work in our scheme. As a result, S2 can only recover
the original matrix Ru with the probability Pr(S2), where

Pr(S2) =
{

1/[((n− 1)+ dr)!×
(n

2
+ dc

)
]!|n > 1, dr, dc ≥ 1

}
.

However, since each guessed Ru is equally likely, S2 cannot
verify whether the guessed Ru is correct or not. Thus, S2 is
unable to obtain the frequency values by counting the test
results. Second, S2 can recover p̄i and p̄j in comparison rounds.
Since our order-preserving merge function has the probabilistic
property, i.e., li = lj ⇒ pi �= pj, we have p̄i �= p̄j even if
li = lj, which prevents S2 from inferring the frequency values
by observing p̄i = p̄j. To sum up, the locations’ frequency
values are privacy preserving.

Query Result on Which E(li) in E(L) Is Picked as the
Most-Frequent One Is Privacy-Preserving: For S1, in the last
round, it knows the received ciphertext E(pk) that has the
largest frequency. However, S2 applies the self-blinding oper-
ation on the returned ciphertext before transferring it to S1.
Thus, S1 only knows the received ciphertext E(pk) has the

largest frequency but cannot link it to the encrypted loca-
tion data in E(L). For S2, it receives E(p̄i) and E(p̄j) from
S1 and can recover p̄i and p̄j using the authorized sk. In the
last round, S2 can even know the largest p̄k and the corre-
sponding E(p̄k). However, since E(p̄k) is generated in S1 by
E(p̄k) = E(pk)

r1 · E(r2), and there is no collusion between
these two servers, S2 cannot even link E(p̄k) to E(pk). Hence,
S2 cannot infer the query result on which encrypted location
in E(L) is the most frequent.

From the above analysis, we can see that in our scheme,
both the worker’s personal information and the query result are
privacy preserving, and we achieve our design goal in terms
of privacy preservation.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheme. Specifically, on the worker side, we will compare our
location encoding algorithm SLE with geohash and Z-order
curve technique in computational costs. On the cloud side,
since we are the first to consider the security and privacy
of the most-frequent location query, the proposed scheme is
compared with the baseline scheme, which neither applies the
ciphertext packing technique nor the order-preserving merge
function, in terms of computational costs and communication
overhead. Besides, in order to facilitate the presentation and
discussion of the performance advantages of the ciphertext
packing technique and the order-preserving merge function,
we divide the process of the query response at the cloud into
two protocols: 1) frequency count protocol (from step-1 to
step-4) and 2) frequency comparison protocol (from step-5
to step-7). All of the experiments are conducted on an Intel
CORE i5-3317U CPU@1.70 GHz Windows Platform with
8-GB RAM.

Implementation: We implement all of the schemes, includ-
ing our proposed scheme and the alternative schemes, in Java.
For geohash, we directly use the package from the maven
repository [18], while the Z-order curve algorithm is an opti-
mized version of [19] that can support the codable range from
1 to 232.

Data Set: In our experiments, we adopt a real-world data
set from New York Motor Vehicle Collisions [20], denoted
as NYMVC. In particular, we first extract the fields of date,
longitude, and latitude in the data set. Then, we filter out
the missing-location items and the abnormal items, in which
the location data are beyond the scope of New York City.
Eventually, there are 792 288 items in our data set.

A. Computational Costs of Encoding Algorithms

In Fig. 3(a), we apply the encoding algorithm SLE, geo-
hash, and Z-order curve technique to encode the location
data in NYMVC and compare the total computational costs
varying the decimal places from 3 to 7. From the figure,
we can see, at all precision levels, our encoding algorithm
SLE outperforms the geohash significantly and the Z-order
curve technique slightly. However, when encoding the loca-
tion data, the Z-order curve technique adopts a table with 256
items to optimize the computational costs, which requires more

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:31:04 UTC from IEEE Xplore. Restrictions apply.

9148 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 11, JUNE 1, 2021

(a) (b) (c) (d)

Fig. 3. Computational costs comparisons. (a) Total time cost for different encoding algorithms. (b) Average time cost of frequency count protocol. (c) Average
time cost of frequency comparison protocol. (d) Average time cost of query user (repeat 1000 times).

memory space than our algorithm. Hence, the SLE algorithm
has superiority in resource-constrained mobile devices over
geohash and the Z-order curve technique.

B. Computational Costs of the Cloud and Query User

In this section, we compare computational costs between our
proposed scheme and the baseline scheme varying the selected
data set size from 50 to 500. To simulate the real-world sce-
nario, we aggregate the location data in NYMVC by the date
(YY-MM-DD) field and generate 1715 subdata sets with the
size from 31 to 959. In the following evaluations, we will con-
duct our experiments on these subdata sets with different sizes.
For setting parameters, both in the proposed scheme and the
baseline scheme, we set the security parameter κ0 = 256, κ1 =
512. As shown in [21], a value in decimal degrees of 5 deci-
mal places is precise to about 1 m at the equator. Therefore,
it is reasonable to truncate the location data with the decimal
places dp = 5. Consequently, the encoded location data will
have the maximum bit length max(|l|) = 52(252 > 3.6×1015).
Also, we can choose the bit length of the mask |ml| = 256
as we would like to pack two plaintexts into one. Regarding
|a|, |b|, and |rc|, we let |a| = 128, |b| = 64, and |rc| = 32,
which can guarantee that 2|rc| >> 792, 288, |b| > |rc|, and
|a| > max(|l|)+ |b| = 52+ 64 = 116.

From Fig. 3(b), we can see that the frequency count protocol
in our proposed scheme has a lower average time cost than
that in the baseline scheme who does not apply the cipher-
text packing technique. The reason is that in the baseline
scheme, S2 needs to decrypt r×c ciphertexts for equality test,
where r is the row size, and c is the column size of the per-
muted matrix Rc. However, in the proposed scheme, S2 only
decrypts around ([r × c]/2) ciphertexts. Although S1 will take
extra computational costs in packing ciphertexts and S2 will
take some costs in unpacking, the experimental results show
that the ciphertext packing technique can improve the average
execution time by up to around 1.5×.

Fig. 3(c) illustrates the computational costs of frequency
comparison protocol in the proposed scheme and baseline
scheme. In our proposed scheme, with the order-preserving
merge function, S1 can merge E(li) and E(freq(li)) into one
while ensuring privacy. However, in the baseline scheme, S1
needs to transfer a pair 〈E(li), E(freq(li))〉 to S2, which means
S1 has to generate two pairs 〈r1, r2〉 and 〈r3, r4〉 to hide li

and freq(li), respectively, where r1 to r4 are random num-
bers. Also, S2 has to employ the self-blinding operation both
in E(li) and E(freq(li)) to break the link. Therefore, although
this function will take extra computational costs in merging
data, the proposed scheme can sharply reduce the average time
cost compared to that of the baseline scheme in frequency
comparison protocol.

Besides, if the order-preserving merge function is not
employed, S1 has to send two ciphertexts, E(lmax) and
E(freq(lmax)), to the query user. Consequently, in the baseline
scheme, the query user has to decrypt one more ciphertexts
instead of executing (2) in Section IV-B5. Fig. 3(d) shows the
time cost for recovering lmax and freq(lmax) on the query user
side, which indicates that the Paillier decryption is much more
expensive than calculating (2).

C. Communication Overhead

One of the novelties of our work is that we make use of
the ciphertext packing technique and order-preserving merge
function to achieve communication efficiency. Employing the
same parameters discussed in Section VI-B, we compare the
communication overhead of frequency count protocol and
frequency comparison protocol between the proposed scheme
and the baseline scheme. Fig. 4(a) plots the communication
overhead of frequency count protocol in both schemes with the
selected data set size varying from 50 to 500. From the fig-
ure, it is evident that the communication overhead of frequency
count protocol in the proposed scheme is halved by employ-
ing the ciphertext packing technique to compress the permuted
matrix Rc. In Fig. 4(b), we compare the communication over-
head of frequency comparison protocol. Since there are n− 1
rounds of interaction between S1 and S2, and a fixed number
of ciphertexts are sent per round, the communication over-
head in both schemes increases linearly with the selected data
set size. In the proposed scheme, S1 only needs to transfer
two ciphertexts to S2, while four ciphertexts are transferred
in the baseline scheme. Hence, the communication overhead
of frequency comparison protocol in the proposed scheme is
reduced to half by using the order-preserving merge function.

VII. RELATED WORK

Finding Frequent Items: In the realm of data mining,
finding frequent items, i.e., heavy hitters, can be defined

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:31:04 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRESERVING LOCATION PRIVACY FOR OUTSOURCED MOST-FREQUENT ITEM QUERY IN MOBILE CROWDSENSING 9149

(a) (b)

Fig. 4. Communication overhead comparisons between the proposed scheme
and the baseline scheme varying selected data set size. (a) Frequency count
protocol. (b) Frequency comparison protocol.

as identifying the items either with top-k frequency val-
ues or the values that occur more than a certain threshold.
Cormode and Muthukrishnan [22] presented methods for
dynamically determining the hot items in a relation. In the
scheme, a small data structure is maintained to monitor the
transactions on the relation. It can be used to return all hot
items without scanning the relation when finding frequent
items. In the survey [23], many schemes are investigated
in addressing the problem of finding frequent items. In the
study, the existing algorithms can be classified into three cate-
gories: 1) sampling-based; 2) counting-based; and 3) hashing-
based algorithm. Recently, Song et al. [24] proposed a novel
approach to find the top-k frequent items in a window of any
specified size within an upper bound, which are estimated by
the k items/groups with top aggregate values. However, all of
the above schemes only focus on improving the performance in
time and space and do not consider the security and privacy in
the outsourcing scenario. Although, in 2019, Wang et al. [10]
proposed a solution for finding the most-frequent values in a
privacy-preserving manner by using a local differential privacy
technique, it can neither output the accurate most-frequent
values nor fully preserve the privacy of query results.

Location Privacy in MCS: The location information plays
a critical role in the MCS system, and most of the MCS
applications require the workers to report tasks’ locations,
which is bound to expose the personal location information
of workers. Therefore, there are many researches [25]–[27]
for preserving the location privacy while providing necessary
services in the MCS system. The very popular solutions are
clocking [28] and adding dummy points. Pournajaf et al. [29]
exploited hiding the worker’s real location inside a cloaked
region, whereas Kido et al. [30] studied on transferring the
real location with false location data (dummies), which have
temporal consistency, to the service provider. Another solution
is to use k-anonymity to protect the worker’s real location
from k locations [31]–[33]. Although these schemes stud-
ied the k-anonymity technique in the LBS scenario, they
can be easily employed in the MCS scenario as well [26].
Recently, in the MCS system, using the differential privacy
technique to protect the location information has attracted a
lot of attention. Wang et al. [34] proposed a location privacy-
preserving scheme to protect workers’ location information in
the task allocation stage. In their solution, the reported loca-
tion is obfuscated under the guarantee of differential privacy.

Yan et al. [35] introduced the differential privacy technique
to preserve the location privacy for task selection in the MCS
system. Wang et al. [36] applied differential location privacy
to the sparse MCS. In this work, a probabilistic obfuscation
matrix, which satisfies ε-differential privacy, is generated to
obfuscate the real location to another one. However, the exist-
ing location protection schemes either lose the accuracy of
the original location or add noises to the reported location.
Therefore, they are unavailable for offering the accurate result
of the most-frequent location query in the MCS system.

VIII. CONCLUSION

In this article, we have proposed the first location privacy-
preserving scheme that can offer the accurate most-frequent
item query in the MCS system. The proposed scheme is char-
acterized by employing our pseudonymization mechanism,
location encoding algorithm SLE, transposition cipher, cipher-
text packing technique, and order-preserving merge function
to not only preserve the privacy but also ensure efficiency.
Security analysis shows that our proposed scheme is indeed
privacy-preserving under the defined security model. In addi-
tion, extensive performance experiments are conducted, and
the results indicate the proposed scheme is really efficient
in terms of computational costs and communication over-
head compared to the baseline scheme. In our future work,
we plan to evaluate our proposed scheme in a real platform,
also would like to extend our work to support efficient and
privacy-preserving top-k frequent items queries in MCS.

REFERENCES

[1] X. Kong, X. Liu, B. Jedari, M. Li, L. Wan, and F. Xia, “Mobile
crowdsourcing in smart cities: Technologies, applications, and future
challenges,” IEEE Internet Things J., vol. 6, no. 5, pp. 8095–8113,
Oct. 2019.

[2] D. Zhang, L. Wang, H. Xiong, and B. Guo, “4W1H in mobile crowd
sensing,” IEEE Commun. Mag., vol. 52, no. 8, pp. 42–48, Aug. 2014.

[3] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich, and
P. Bouvry, “A survey on mobile crowdsensing systems: Challenges, solu-
tions, and opportunities,” IEEE Commun. Surveys Tuts., vol. 21, no. 3,
pp. 2419–2465, 3rd Quart., 2019.

[4] X. Zhang, R. Lu, J. Shao, H. Zhu, and A. A. Ghorbani, “Secure and
efficient probabilistic skyline computation for worker selection in mcs,”
IEEE Internet Things J., vol. 7, no. 12, pp. 11524–11535, Dec. 2020.

[5] N. Maisonneuve, M. Stevens, M. E. Niessen, and L. Steels,
“Noisetube: Measuring and mapping noise pollution with mobile
phones,” in Information Technologies in Environmental Engineering.
Berlin, Germany: Springer, 2009, pp. 215–228.

[6] S. Kim, C. Robson, T. Zimmerman, J. Pierce, and E. M. Haber,
“Creek watch: Pairing usefulness and usability for successful citizen
science,” in Proc. SIGCHI Conf. Human Factors Comput. Syst., 2011,
pp. 2125–2134.

[7] H. Ma, D. Zhao, and P. Yuan, “Opportunities in mobile crowd sensing,”
IEEE Commun. Mag., vol. 52, no. 8, pp. 29–35, Aug. 2014.

[8] Q. Zhao, C. Zuo, G. Pellegrino, and Z. Lin, “Geo-locating drivers: A
study of sensitive data leakage in ride-hailing services,” in Proc. Annu.
Netw. Distrib. Syst. Security Symp., Feb. 2019, pp. 1–15.

[9] W. Feng, Z. Yan, H. Zhang, K. Zeng, Y. Xiao, and Y. T. Hou, “A survey
on security, privacy, and trust in mobile crowdsourcing,” IEEE Internet
Things J., vol. 5, no. 4, pp. 2971–2992, Aug. 2018.

[10] T. Wang, N. Li, and S. Jha, “Locally differentially private heavy hitter
identification,” IEEE Trans. Dependable Secure Comput., early access,
Jul. 9, 2019, doi: 10.1109/TDSC.2019.2927695.

[11] Y. Zheng, R. Lu, and M. Mamun, “Privacy-preserving computation
offloading for time-series activities classification in ehealthcare,” in Proc.
IEEE Int. Conf. Commun. (ICC), 2020, pp. 1–6.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:31:04 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2019.2927695

9150 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 11, JUNE 1, 2021

[12] G. Lasry, A Methodology for the Cryptanalysis of Classical Ciphers with
Search Metaheuristics. Kassel, Germany: Kassel Univ. Press GmbH,
2018.

[13] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Theory Appl. Cryptogr. Techn., 1999,
pp. 223–238.

[14] Y. Zheng, R. Lu, and J. Shao, “Achieving efficient and privacy-
preserving k-NN query for outsourced ehealthcare data,” J. Med. Syst.,
vol. 43, p. 123, Mar. 2019.

[15] R. Durstenfeld, “Algorithm 235: Random permutation,” Commun. ACM,
vol. 7, no. 7, p. 420, 1964.

[16] G. Niemeyer. (2008). Geohash. Accessed: Feb. 18, 2021. [Online].
Available: http://geohash.org/site/tips.html

[17] G. M. Morton, A Computer Oriented Geodetic Data Base and a New
Technique in File Sequencing. Ottawa, ON, Canada: Int. Bus. Mach.
Company, 1966.

[18] Geohash Maven Repository. Accessed: Feb. 18, 2021. [Online].
Available: https://search.maven.org/search?q=g:ch.hsr

[19] Z-Order Curve Implementation. Accessed: Feb. 18, 2021. [Online].
Available: https://github.com/eren-ck/MortonLib

[20] JohnSnowLabs. (2018). Nypd Motor Vehicle Collisions.
Accessed: Feb. 18, 2021. [Online]. Available:
https://datahub.io/JohnSnowLabs/nypd-motor-vehicle-collisions

[21] ISO 6709. (2008). Standard Representation of Geographic Point
Location by Coordinates. Accessed: Feb. 18, 2021. [Online]. Available:
https://www.iso.org/obp/ui/iso:std:iso:6709:ed-2:v1:en

[22] G. Cormode and S. Muthukrishnan, “What’s hot and what’s not:
Tracking most frequent items dynamically,” ACM Trans. Database Syst.,
vol. 30, no. 1, pp. 249–278, 2005.

[23] H. Liu, Y. Lin, and J. Han, “Methods for mining frequent items in data
streams: An overview,” Knowl. Inf. Syst., vol. 26, no. 1, pp. 1–30, 2011.

[24] C. Song, X. Liu, T. Ge, and Y. Ge, “Top-k frequent items and item
frequency tracking over sliding windows of any size,” Inf. Sci., vol. 475,
pp. 100–120, Feb. 2019.

[25] Z. Wang et al., “When mobile crowdsensing meets privacy,” IEEE
Commun. Mag., vol. 57, no. 9, pp. 72–78, Sep. 2019.

[26] L. Pournajaf, D. A. Garcia-Ulloa, L. Xiong, and V. Sunderam,
“Participant privacy in mobile crowd sensing task management: A sur-
vey of methods and challenges,” ACM SIGMOD Rec., vol. 44, no. 4,
pp. 23–34, 2016.

[27] Y. Wang, Z. Yan, W. Feng, and S. Liu, “Privacy protection in mobile
crowd sensing: A survey,” World Wide Web, vol. 23, no. 1, pp. 421–452,
2020.

[28] C.-Y. Chow, M. F. Mokbel, and X. Liu, “Spatial cloaking for anony-
mous location-based services in mobile peer-to-peer environments,”
GeoInformatica, vol. 15, no. 2, pp. 351–380, 2011.

[29] L. Pournajaf, L. Xiong, V. Sunderam, and S. Goryczka, “Spatial task
assignment for crowd sensing with cloaked locations,” in Proc. IEEE
15th Int. Conf. Mobile Data Manag., vol. 1, 2014, pp. 73–82.

[30] H. Kido, Y. Yanagisawa, and T. Satoh, “An anonymous communication
technique using dummies for location-based services,” in Proc. Int. Conf.
Pervasive Services, 2005, pp. 88–97.

[31] X. Liu, K. Liu, L. Guo, X. Li, and Y. Fang, “A game-theoretic approach
for achieving k-anonymity in location based services,” in Proc. IEEE
INFOCOM, 2013, pp. 2985–2993.

[32] J. Cui, J. Wen, S. Han, and H. Zhong, “Efficient privacy-preserving
scheme for real-time location data in vehicular ad-hoc network,” IEEE
Internet Things J., vol. 5, no. 5, pp. 3491–3498, Oct. 2018.

[33] B. Niu, Q. Li, X. Zhu, G. Cao, and H. Li, “Achieving k-anonymity in
privacy-aware location-based services,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., 2014, pp. 754–762.

[34] L. Wang, D. Yang, X. Han, T. Wang, D. Zhang, and X. Ma, “Location
privacy-preserving task allocation for mobile crowdsensing with differ-
ential geo-obfuscation,” in Proc. 26th Int. Conf. World Wide Web, 2017,
pp. 627–636.

[35] K. Yan, G. Luo, X. Zheng, L. Tian, and A. M. V. V. Sai, “A compre-
hensive location-privacy-awareness task selection mechanism in mobile
crowd-sensing,” IEEE Access, vol. 7, pp. 77541–77554, 2019.

[36] L. Wang, D. Zhang, D. Yang, B. Y. Lim, and X. Ma, “Differential
location privacy for sparse mobile crowdsensing,” in Proc. IEEE 16th
Int. Conf. Data Min. (ICDM), 2016, pp. 1257–1262.

Songnian Zhang received the M.S. degree from
Xidian University, Xi’an, China, in 2016. He is cur-
rently pursuing the Ph.D. degree with the Faculty of
Computer Science, University of New Brunswick,
Fredericton, NB, Canada.

His research interests include cloud computing
security, big data query, and query privacy.

Suprio Ray (Member, IEEE) received the Ph.D.
degree from the Department of Computer Science,
University of Toronto, Toronto, ON, Canada, in
2015.

He is an Associate Professor with the Faculty of
Computer Science, University of New Brunswick,
Fredericton, NB, Canada. His research interests
include big data and database management systems,
run-time systems for scalable data science, prove-
nance and privacy issues in big data, and data

management for the Internet of Things.

Rongxing Lu (Fellow, IEEE) is currently an
Associate Professor with the Faculty of Computer
Science, University of New Brunswick, Fredericton,
NB, Canada. He has published extensively in his
areas of expertise. His research interests include
applied cryptography, privacy enhancing technolo-
gies, and IoT-big data security and privacy.

Dr. Lu was a recipient of the nine best (stu-
dent) paper awards from some reputable journals
and conferences. He is the Winner of Excellence in
Teaching Award from 2016 to 2017, FCS, UNB. He

currently serves as the Vice-Chair (Conferences) of IEEE ComSoc CIS-TC
(Communications and Information Security Technical Committee).

Yandong Zheng received the M.S. degree from
the Department of Computer Science, Beihang
University, Beijing, China, in 2017. She is cur-
rently pursuing the Ph.D. degree with the Faculty of
Computer Science, University of New Brunswick,
Fredericton, NB, Canada.

Her research interests include cloud computing
security, big data privacy, and applied privacy.

Jun Shao received the Ph.D. degree from the
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China, in
2008.

He was a Postdoctoral Fellow with the School of
Information Sciences and Technology, Pennsylvania
State University, Pennsylvania, PA, USA, from 2008
to 2010. He is currently a Professor with the School
of Computer and Information Engineering, Zhejiang
Gongshang University, Hangzhou, China. His cur-
rent research interests include network security and
applied cryptography.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:31:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

